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PREFACE

This report summarizes theoretical analyses carried out

under contracts NASW-1778, "Research in the Theory of Magneto-
hydrodynamic Turbulence," and NASW-2082, "Theoretical Research
on Plasma Turbulence Involving Binary Particle Collisions and
Effects," over the period August 1968 to June 1971 and NASW-2352,
"Research on Plasma Turbulence Involving Binary Particle Colllsicny
and Collective Effects," over the period February 1972 to May 1972
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A. Klimas, F.X. Murphy and G. Sandri, "Poincare-Lighthill
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Methods for Linear Perturbation Problems," Quart. Appl.
Math., June 1972. »

F.X. Murphy and G. Sandri, "Causallty and Dispersion
Relations for the Two-particle Correlation Function,"
Bull. Am. Phys. Soc. 16, 552 (1971).

A. Klimas and G. Sandri, "Asymptotic Expansions in Hilbert
Space," Not. Am. Math. Soc. 18, 527 (1971).

F.X. Murphy and G. Sandri, "Uniformization of Asymptotic
Expansions," Not. Am. Math. Soc. 18, 928 (1971).

A.H. Kritz and G. Sandri, "On the Quasi-linear Method in
Plasma Turbulence," Bull. Am. Phys. Soc. 15, 96 (1970).

The following three papers are in preparation:
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A.H. Kritz and G. Sandri, "The Ionization Model in Non~-
equilibrium Statistical Mechanics."

F. Hanson, G.V. Ramanathan, A. Klimas and G. Sandri,
Model for Motion of Charged Particles in the Presence of
Electrostatic or Magnetostatic Fluctuations."

F.X. Murphy and G. Sandri,"General Dispersion Relatlons
for the Two-particle Correlation Function."



I. OUTLINE OF THE PROBLEM, MAIN RESULTS AND CONCLUSTIONS

The main purpose of our study 1s to investigate plasmas in
which binary collisions are important ("energetic" plasmas) as
contrasted with "collisionless" plasmas (this latter being of
more direct interest to the fusion program). Under a number of
conditions which occur frequently, it is necessary to study thess
plasmas by means of nonadiabatic methods (as contrasted to the
adiabatic techniques exemplified by Bogolubov's method). A most
important example of such circumstances is:

1. A microunstable particle distribution functlon.

Other important examples are:

2. The presence of rapidly oscillating external fields
(1.e., when the external frequency is comparable to
plasma frequency, Oberman and Dawson),

3. The presence of persistent two-body correlatlions in
a stable plasma (Kritz, Ramanathan ard Sandrl),

4. The presence of moderate external magnetic fields even
if not rapidly oscillating (i.e., when the Larmor radius
is comparable with the Debye length, Klimas and Sandri).

In outline, we can contrast the adiabatic point of view with
the nonadiabatic one as follows. If we don't use the adiabatic
approximation, we can formally solve the equation for the two-
particle correlation, g , with the help of a Green's function
operator, G , as

v
g (t) =fo G (5=2)F (A )ah (1.1)

and then obtain a formal equation for the one-particle distribu-~
tion, F , as

£
2 =fo TG (-2 )F (A )dh

=j(;t1{(t.-k)F(X)dX : (1.2)



where L 1s a linear (Pphase-mixing") operator and
K(t) = LG(t) (1.3)

Approximations to the quantities G and IG have been studied
by a number of authors (Lenard, Dupree, Gurnsey, Wolff, C. Wu,
Rogister and Oberman). The adiabatic approximation to Eq. (1.1)
consists of writing (on the basis that F varies slowly)

Baa () = [ G4 (6) (1.8

and the corresponding adiabatic approximation to Eq. (1.2) is

then
DF (& *
(D__(_lt )«f Lfo G (M)arF, 4 (t)
= C[Fad(t)] (115)

which is the standard form of the kinetic equation for a stable
plasma (the Fokker-Planck equation of Landau or the Bogolubov-
Balescu-Lenard-Gurnsey modification of it). When either of the
two following quantities contain dlivergences

J;mb(x)dx , L\L:&(X)dx

the adlabatic approximation clearly falls.

When the adiabatic kinetic equation, Eq. (1.5), holds, one
can deduce from it a set of moment equations for the density,
flow velocity and absolute temperature that allow for a fluild
description (provided, of course, that the system is not rarefied).
In the cases where nonadiabatic treatment is needed, one can try
to solve Eq. (1.2) or, equivalently, one can try to solve simul-
taneously for the pair of quantities (F,g). (Some authors replace
g by the density of field fluctuations I and then consider the
pair (F,I)). Meaningful moment equations for the nonadiabatic
system are at present not available in general. (This is alsb



the case for the fully collisionless regimes. The moment equation.
of the Chew-Low-Goldberger theory are only semimicroscopic.) An
attractive possibility 1is that under suitable conditions one may
succeed in deriving from the nonadiabatic pair (F,I) coupled
equations for the particle kinetlc energy denslity and the field
energy density which coincide with those proposed by Tchen.

It is impossible, at present, to obtain a general tractable
simplification of the nonadiabatic equations. We have, however,
been able to obtain general conditions that must be satisfied by
the real and imaginary parts of the Fourier transform of g,g'.
These relations are in the form of standard dispersion relations,

2.8.,

Re £(0) = & Pflm—g-(-“’—l dw’ (1.6)

’
W -0

Since the dispersion relations have been shown to be valid without
the use of the adiabatic approximation (Eq. 1.6) is a general con-
sequence of the "causality" of particle propagation), they offer

a test for any approximation scheme one may try. For example,
they are violated in the "ionization model" (i.e., i1f the poten-
tial is switched on at t = O) if the adlabatic approximation is
applied. Furthermore, since Im g determines DF/Dt quite di-
rectly and Re g§ 1is, in principle, measurable (by the scattering
of weak radiation from a plasma), one may hope that the dispersion
relations may one day help to coordinate experimental facts much
as the standard dispersion relations for quantum systems have done.

In view of the difficulties in treatlng the nonadiabatic
equations directly, 1t is important to obtain approximation methods
that give useful simplifications. We have obtained two schemes:
(1) the "reordering technique" (Ramanathan and Sandri) that has
been applied succéssfully to determine the behavior of the long-
range part of the stable plasma g function (the resulting g
satisfles the dispersion relations (Eq. (1.6)) and (2) the "com-
patible" multiple scale expansion (Klimas and Sandri) which has



been successful to construct the evolution of F for the ioni-
zation model. Our results seem to agree with the independent
analysis of Humphrey, Wilson and Futterman, "solution of the Rata
Equations by Multiple Time Scale Method," Lockheed Lab. preprint

(1971).

Since a general approximation scheme to handle the nonadia-
batic equations 1s not available,* we have used numerical method:
to investigate their behavior by means of:

(1) One-dimensional models for charged particles in the presence
of electrostatic fluctuations which have nontrivial features in
common with two-stream or loss cone microinstabllities (1.e., a
Penrose zero in the dlelectric function).

(2) Models for charged particles in the presence of a three-
dimensional isotropic spectrum of magnetostatic fluctuations. We
find a diffusion tensor substantially different from the adiabatic
one.

The numerical method that we have employed successfully
consists in Laplace transforming Eq. (1.2) and then inverting 1ts
‘solution with the Bellman-Kalaba-Lockett technique. The numerical
integration scheme has proved quite successful even though the
systems congidered do not resemble those originally discussed by
Bellman, Kalaba and Lockett. '

The conclusions that arise from our analytic study of the
jonization model and from the numerical integrations of systems
with static fluctuations is that substantial numerical, as well
as qualitative, differences occur between the adiabatlc and non-
adiabatic approaches. In particular,

1. For one-dimensional electrostatic fluctuations, the kernel
function decays as K(t) ~ 1/t giving rise to an F that grows
(or decays) substantially more rapidly than in the adiabatic
approximation. Furthermore, F exhibits a very long tail

* The situation is again analogous to that holding in the colli-
sionless regime where numerical integration of the Vlasov equa-
tion has successfully paralleled the results of the quasi-linear
theory for a "bump in the tail" distribution.
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(F ~ [t(4n \!:)2]"1 which is barely integrable. Such a tail is
totally absent in the adiabatic treatment. The nonadiabatic

total area under F 18 exactly zero, while in the adiabatic treai~
ment it is very large (or not defined).

2. In the 1¢nization model, the correlations persist for all times
in sharp contrast with the adiabatlc theory which reaches instart
equilibrium. Again, the adlabatic theory does not allow for the
long tall in the F function.

3. In the models with magnetostatic fluctuations, the diffusion
tensor D,y must be replaced by a diffusion function D(t) .
The quantity

Dog = D(w) (1.7)

often is infinite or vanishes in sharp contrast with the results
of adlabatic approximatlion.

A general feature that emerges from the nonadiabatic theory
is that transport is not local in time. Thus, for example, the
heat flow vector is of the form

4 t "
a(6) = =[ n(s-2)Tr(n)ax (1.8)
0

rather than the total (memoryless) adiabatic result

daa = -| [ ner fence) - ke (1.9)

The numerlcal analysis shows that the transport coefficients can
differ by substantial factors (several decades) from the adiabatic
results. We believe that this result is particularly significant
because statlc and steady-state configurations, as well as the
stability of a plasma with collisions, depend on the transport

properties.

The outline of this report 1s as follows. In Section II,
we give the calculations of the two- and three~body correlations



needed to determine F for tke ionization model. (The correla-
tions can be treated adiabatically in this case.) In Section IIZ,
we summarize the general dispersion analysis and discuss the
examples of the ionizatlon model and of the static fluctuations.



II. ANALYSIS OF THE CORRELATION FUNCTIONS

We consider the Lorentz gas from first principles. It 1s
constituted by N Zons and one electron (equivalently a large
number of noninteracting electrons). The Hamiltonian is given by

N
2 o
n=

The mass of the electron can be taken to be one and the potentlal
to be monotonic.

We have Newton's equations which are written as

2 N - - .
R = g%— =p=v (2.2
N 30 (|%-%,1) N3
s  OH 1 Y i o0
ox i ox =y ox ox

where we have introduced the total potential for the electron
‘ N

° =) o(lx-x]) | (2.4)
1=1 |
The system 1s contained in a large box of volume V with specu-
larly reflecting walls. We then have Liouville's theorem which
can be written as -

DFN 3FN 3 3pN s oY
Dt 3t

=3_t.__+v.VF - 25— (2°5)

We introduce the reduced distribution functions by

s N X
F =fFH T (2.6)

i=8+l



where s 1is the number of ions. The equation satisfied by the
reduced distribution functions is obtained from the Liouville
theorem as follows

dp> aF

ot

dx
_Vl =\/\{ -7.7RN 4 éganNl-[L - (2.7}
s+1 d% dv {1=g5+1

u “—12

The first term can be transformed as follows
N
- o - dx DA .
f"'VFN I <*- f NT = v.Vp© (2.8
1=g+1 i=s+1 i

The second term in Eq. (2.7) can be transformed as follows

N
[y Zaetp T
dx oV J=8+1 J

i=1
8 N N
[y 2y Za [V ST ie® RO
d a‘ - Vv a‘ a‘ ol V. -
{=1 9% v J=s+l J fos+l X v J=s+1 7
The first part of this quantlty can be written simply as
15p® (2.10}
The second part in Eq. (2.9),
N N N
N oo N dx
2J -:i°§§- Il *Vi (2.11)
O0X OV J=s+1 ']

i=8+1
can be reduced considerably. Using the symmetry of the F func~-

tion, we have N-s equal terms. Therefore, the second contri-
bution to (2.9), given by (2.11), can be written

7 dx (2.12)

N—s\/‘a¢s+1 apstl o
% v s+l

Summarizing, we can write the Liouville equation in the following
form



e

8 a @
%%— = -v-VF® + IF® 4 st Lgyq pS+l (2.13;
with an obvious notation for I . We have carrled out the reduc-

tion of the distribution function without introducing dimension-
less parameters. We now study the dimensions of the relevant
quantlties,

From Eq. (2.6), we can prove readily

ax
s =st+l $+1 (2.14)

Therefore, dimensionally, we have
[F®] = [F°+] ' (2.15°

Therefore, the only quantities that carry relevant dimensions are
the operators.

We introduce dimensionless variables as follows

-
’ ’ th -/ v o7 X
¢ = ¢ t = t ——— v = —— X 2 — (2‘16/
% ro Ven o

We now multiply Eq. (2.13) by the quantity

r
0 (
——— 2.17)
Veh
We then obtain
s
rs 3p5 To = - 8¢1 S s 3 ¢é+16Fs+l
p a +v Ve "y "—_"F o+ —— d S+l Y
Vin t th — OX ov 3% oV
(2.18)

Using the dimensionless variable (2.16), we can rewrite

OF® | 3%°p° - %o ZM: F_ O¢ fd3 % aFSH (2.19)
dx v v s+l 337 3%

We will use the following parameters

10



2

Vi, =T, e=pm , nrg~1 (2.20;

We can introduce now the Meyer expansion given by

B s=1
s _,0 ’ 2 -
FT o=k +>_‘ ki+}:i kiJ+... (2.21)
S i=1 i=1 j=2

This gives the hierarchy for the correlation functions as

8
8 - oS o .
%‘-,:— + veWk® = ¢ 1%® + € L Iik?i:’)‘ + efds’:s+l Is+lks+1 (2.22)
: i=1
The last term in Eq. (2.22) can be written
s+l ;
Ly, K (2.23)

- Now, we carry out the direct expansion of the hlerarchy for
_the correlation equations. For weakly coupled systems, we can
write
A | 22 s s, 8 . s-1 s+1 -
5t~ + V% = eI’k + € 2J Iik(i) + €L 4k (2.245
i=1
The following ordering 1s now introduced

x> =z s (n) (2.25)
n=0

In zero order, we obtain

2x(5(0) 28 50) _ (2.26)

whose solution is given by
- o
13(0)(g) = &~V Vt,3(0) () (2.27)
It is convenient to use the following variables

-

t =% - Xy (2.28)

11



We can then write Eq. (2.27) more explicitly as
- a «>
50, ,7,6) = k() (E,-3¢,3,0) (2.29)

The use of variable (2.28) is suggested by spatial homogeneity
which we shall assume throughout the rest of the calculation.

In first order, we obtain

w

S(l) - _. s (1 _".A --s’.a _
_g]rt{ + veVk ( ) S v vtkS(O)(O) +Z Iie v Vtk?ij).(o) +
i=1

- -

v Ve
+\]ﬂdxs+lls+le Ve VB S+l o) (2.30)

The solution to this equation is given by

- = - -

N = a2 5 2
ks(l)(t) _ e_v.Vtks(l)(o) + e-vovtf eV‘VXISe-V.Wd/\kS(O)(O) +

Ae £ = 2
;e Ve JF oV
0]

v L T o ~VeUA . 841(0)
+ e j; e dexs+lIs+le dAk (0) (2.31)

- D
“VOV’\-kaS-l(O) (O) +

<
e
n
>~
H
P
®

In second order, we obtain the following equation

%%Eﬁzl £ 9 7S(2) o o )(t)+-Yﬂ I, (1)( )(t) +k/1dxs+lIs+1ks+1(1%

(2.32)
We now examine the case s = O whilch ylelds
o{2) -
g%____ =k[\dx111kl(l)(t) (2.33)

specializing Eq. (2.31) for the case s = 1 , we obtain

12



[ ) & D

- - - - t
W 1(1) . e-v-Vtkl(l)(O) N e-v-w:f SVeVALL, -VoVdekl(O)(o) '

-
-v-Vt f v. vxf dx Ie v.vxdwe(o)(o)

o

t -
e-V-Vt j‘o eV’mIl V.VXkaO(O)(O) (203"")

Thié expression can be manipulated into the following form

1(1)_ 1(1) . t AP, = 2 (5 o )kl(o) QA &4 D
k =k x-X,~=-vt,v,0) + AN == (X=X, =VA) =5+A = X=-X,~Vt,v,0)+
( 1 ) Jr Bx( 1 ) dx oV ( 1

0
t
S 0p - S 2(0) -
+ ar| dx, —=(x- -VX —+ X x-x -vt, X=X, -Vt v,O +
JQ 2 Bx( )K >V ( 2 )
t 0(0)
Bk
+ XX, =¥A)dA - (0 (2.35)
J; 3% < 1 dv )

The second term in Eq. (2.35) can be written

t -l - - & - a2 - &
f e-v-v('c-x):[le-v-v e+v-thxe-v~Vtkl(0)(o)
o)

t Aek x )
[]\dXe'v' Ile v ] 1(0)(x-x -vt v,0)
o)

t
dp,2 2 A../0 1(0)
A = (X=X ~VA ) = X=X, =Vt,¥V,0 2.36
fOBx 1 aszav (%) ) (236

The part containing kl(o) is a transient in time so that this

quantity, as well as the third term, cannot contribute any secu-
larity. We notice, however, that the fourth term in Eq. (2.35)

kO(O)

contains at time equal zero which 1is constant 1n space.

Therefore, we can have a secularity. We conclude that kl(l)
has a transient term - one term that saturates to a constant in

time. We can write therefore

13



0(2) _ ,0(2) +k£f dk\f\dﬁlllkl(l)(k) (2.37)

which, for large values of t, introduces a secularity. We have

¢ (X-%- )
0(2) _ 0(2 1 1(1)
k (0) +fdx _, £ dAk ()

L d(x=X,) Pt 0(0)
kO(E)(o) +fdxl S;?_____}_J; dx ax(x-xl-vu)oug-i (0;
(2.38)

To exhibit the secularity, we examine carefully the integral

-/;C \/;:‘a(b(x-x -vu.)du ‘fdu\[; ax —-—(x-x -Vu.)

t
=\j; du S; (x-x1~vu)[t -] (2.39)

This quantity can be manlipulated into the form

t t
a(b-‘-\ > f a¢-‘é R
=t ap S(X=Xq,=Vi) = pAp == (X=X, =VHL 2.40

j; Bx( 1) 0 32( 1~ ( ;

Both integrals reach a maximum (or saturate) when

IX-X ' + r
t ~ 1 Q (2.41)

v
but the coefficient on the first term grows with time. Therefore,
it is a true secularity.

We examine the transient term. We notice that if the quan-~
tity

kl(l)(;{";{l';’\t:\a’:o) (2-42)

14



is bounded in space, i.e., if

|§-§1-vx| >Rk =0 (2.43)
then we obtain
t . 4
[‘ d:X k¥° ~ constant (2.44)
Y0 tt

For the other terms, again we can reverse the ordér of integra-
tion, giving, for example,

£
JF dp -z (x-x ~vp) <~— + W )\/\ dxkl(l)(§-§1—$ ,¥,0) (2.45)
I

Here, the second integral saturates to a constant in time. Clear-
1y, we do have a secularity which we must eliminate by uniformiz-
ing the expansion.

Therefore, we introduce the extended functlons
K" (€ ,V,TgsTyseee) (2.46)
which satisfy
Es(éiv,t,et,ezt,...) = k% (£;,v,t) (2.47)
and we have chosen the trajectory in extended space
T = et (2.48)

so that the time derivatives can be written

Dk®  dk® ok 5 Ok°
ot e <y + ) (2119

We now expand the extended functions as follows

15



KS = ES(O) + egs(l) + 6253(2) + O(e3) (2.50)

where the correction terms should not contaln secularities. From
this point on, the quantities are expanded extended functions and
we drop the bars under the functions.

Now, we consider the zeroth-order equation. We obtain

O(O) =0 (2.51)

3T

The solution of this equation is given by
1K0(0) 2y - 0(0)(T ) (2.52)

For & greater than zero, we obtain

~ S(O) - a _
L 3. k5(0) _ o (2.53)
0

whose solution can be written as

13 (0) = 1800 (e, v, v,0,7)) (2.54)

The first-order equation is given by

0(1) 0(0) - 1(0) o
SEO + gfl JF Xy 5¢(X -X ) §%~—- (X—Xl-VTO,V 0 Tl)

(2.55)
We examine s = 0 first and find

T - 1(0) )
1 0(1) _ kO(l)(O’?l)'*Jng\/\dxl g%‘x-xl) g%———-(x-xl-vk,v,0,11)+
o(o) .
- TO g—]:;—]-———- (Tl) (2'56)

We eliminate the second term which saturates because

16



ako(o)

B?E—_— =0 (2.57)
so that we obtain
k000)(2) = k0(0)(z,) (2.58)

This equation replaces Eq. (2.52). Therefore, we are left with

0(1) 0(1) o OP = o akl(O) S S S o -
(0, ) JQ Jf 1 ax( 1) S (k=% 1

v

(2.59)
Now, we examine the case s = 1 and we have

1(1) 1(0 N . 0(0) N ()
Ok + Ok ) 3 1(1) é(x-xl)-af + é% x-x9-§§———- +
810 811 X v ox v

2 39 a2(0) 5
+fdx2 g§(i 2) e (€1-VTO,€2-VTO,V,O,11)

(2.60)
Integration yields

0(0)

)
v

1(1 1(1 3 T0,, 3¢ d
K 1) . k ( )(x-xl-VTO,v,O,Tl)-+J£ dk.gg(x-xl-vk) S (12) +

. A
\/\ ar 2 (x-x -vA) gi—lziﬁgl(x-x ~VT5,V,0, 11) +

"o (*),.2(0)
o\ Kk s
+‘j; dx‘j\dx (x-x -vA) 3————————(x-x1-VTO,x-xe-VTO,V,O,ﬁ)

- %?I TOkl(O)(x-xl-VTo,v,O,?l) | (2.61)

The iast term would be a pseudo-secularity and for large X=X

17



would produce larger values than the leading-order term: There¥
fore, we set

a2 (0)

a?z___ = (2.62)
uand we conclude
kl(O) = kl(O)(x-xl-VTO’vlo’ O’?E) (2063)

which replaces Eq. (2.54). We are then left with the following
quantity

kl( ) _ 1(1)(x_x1-vro,v o, Tl) +\jﬂbdk 3% x-xl-vl) 3—2£32 (12) +

To a¢ a(l)kl(O) -
+\/; ar si(x-xl-vk)- 85“"'“—_(x'x1'VTO’V’O’Tl) +

0 5 (1),2(0)
+\/; dl\/\dx (x-x ~-vA) 3————————(x—x VT X=X5=VTq, V, 0, T

(2.64)

Now, we examine the case s = 2 . The equation 1s given by

1(0) (o\

1 3k
20 0 Lm0 By i+ Bloony i
312 (0) 2( ) 3q3(0)

+ $2(x-x,) B-t;lﬁ?—- L P o fax S (x-x3) ;1.”3_

(2.65)

| Integration yields

18



0 () 2(0)
)
+-Jg dk[gg(x-xl-vx) gv—J£—-(x-x2-VTo,v,O,O,#e) +

3 (2 1(0)
+ EW(X'X -vA) 3——-—————(x-x1-v10,v 0,0, 12)]

3—J; dx[a¢(x-xl—vX) i(x—xz-vx)}~o

a(K)k2(O) -
3——~———~—(X—X1-VTO,X-XZ-VTO,V,0,T2) +

% y 50),3(0)
-FJQ dxljﬂdx3 si(x-x3-vl) 37——————~(x-x1—vro,x~x2-v10,

>
X=X ~VTO,V,O,Tl) +

3
- 1o %;I kz(o)(x-xl-VTo,x-xgmvwo,v,O,?l) (2.66)
By the previous argument, we set
22 (0) -
E?I“—— =0 . (2o07}
s0 that we conclude
kg(o) = kz(o)(x-x1~VTO,x-x2-vwo,v,O,O,?g) (2.68)

This equation replaces Eq. (2.54) once more. Returning to (2.66),
we are left with

19



2(1 ( ‘ -
k (1) = Kz(l)(x-xl-VTojx-xa-VTo,V,O,Tl) +

70 Ao
4—Jg dl[g%(x-xiﬁvx) gv-BL——-(x-xQEVTO,v,O,O,#e) +

(x),1(0) | |
+ g%(x-x2—vx) gvﬂ—g+~—¥(x—x1-VTo,v,O,O,?Q)] +

W [ (),2(0)
'+J£ de[g%(x-xl-vx) + g%(x-szVX)] gv——g—-——(xhxl-VTo,
A,
T.

X-x -VTO’V’ O’ l'

2

0 3¢ a(M)y3(0)
+L dxf dx3 a-f(x-x3-vx) W———-—(x-xl-vro,x-xz-v'ro,

o
x-x3-VT0,v,0,11) (2.69)

In general, we can write

S(1) 2 ks(l)(x-xJ-VTo,v,o,$l) +

8
C ro (*), s-1(0)
) fo ar 3 (xex,-va) $K (x-x (4 jVT0s V50,0, 7,) +
i=1
s
" To (*),.s(0) s .
*—}J JQ da g%(x-xi-vl) %;——E————(x-xg-vro,v,O,Tl) +
i=1 _
T (*), 8+1(0)
+-J; O ax ax .4 g%(x-xs+1-vk) gv k (x-xJ-VTO,v,O,?l)
(2.70)
By the previous arguments, we write
s(0)
a¥1 =0 (2.71)
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80 that we conclude

8(0) _

ks(o)(x-xi-VTo,v,O,O,% (2.72)

5)
Therefore, we conclude that Eq. (2.54) has been replaced by Eq.

(2.72) for all values of s .

Now, we consider the second-order theory. First, we consider
8 = 0 . The equation 1is given by

a0(2)  5,0(1)  5,000) k(1)
610 + 6:1 + 612 Jﬂdx (x X1 ) ov =

=\/‘dxl %%(x-xl) %V[kl(l)(x-xl-vro,v,o,#l) +

o(o) ,
4-j; (x-x1 -v\) w—————(we) +

5 (), 1(0)

+ [Oan 99 A) ( ,0,0,7,)
J % X-X -V P R X=X -VTO,V T2 +

0

+\/;Todl\/\dx (x-x -v\) gﬁiinigl

-
° (x-xl-vro,x-xz-vro,v,o,O,Tz)J (2.73)

Integration yields

10(2) =£T° ax fdxl g-f-:(x-xl) %—‘-‘—(——)(x-x -v\,V,0, Tl) +

TO 0 ( R
+J; dx fdxl éri(x-xl) %VL du. (x-x ~-vi) 3-1{—-2 ('rz) +

T oo O(O)
- [ [ony Sy &5 [ Shxenyow) P—3,) 4
2l



T, A 1(O
+L odl fdxl (x-xl)fdu x(x--x]_-vl"-) g—(f—z-l-{——(—-l

o)
. (x-xl-vx,v,o,o, 12)

+“/; dxfdxl T(X'xl)fd“- fdx 3_(x %o i) a(u)ka(o)

-
. (x-xl-vx,x-xz-vx,v,0,0, 12) +

01 R o(o)
- TO g—l—:—l—('—)' (O:Tl) - TO a‘——(TQ) (2'711')

The second term can be wrltten

o 0(0) ,
v [ oxy Rtem) F5 [ ow Shiew) % (7, (2.75)

Other terms for large 10 behave as follows

T0 max 1(1) a
k0(2) ~ JF dx‘]\dxl g%(x-xl) g%-———(x-xl-vl,v,o,rl) +
TOmax T0 max
d ) d
-](; dxfdxl ai:%(x-xl) 3-‘—/,-‘/; dp a—%(x-xl-vul)-

0(0)
. %—5——(— (3,)

0 max 0 max
d ¢
+J; dkfdx (x xl) a-v-j; dp a—-(x-x -Vl ) o
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gﬁiﬁzﬁﬁgl(x-x -vA,Vv,0,0, 12)

T0 max T0 max
+~/; dl\/‘dxl g%(x-xl) %V\/; du,fdx2 g% .

(A)2(0)
(x-x -ViL ) g———lg——-—(x—xl-vl,x-xa-vk,v,O,O,?Q) (2.7€)

Since, in each case, the quantity

¢(X-X1) (2 '77)

nails down Xq which nails down » , and so on, there 1s no secu-
larity. We then conclude

o(1) 0(0) | -
- B0, - F(y) + [ oxy Bheeny) G 0w -

0(0) ,
(x-xl -viL) 5————(T2) (2.78)

Integration of Eq. (2.78) with respect to =, ylelds
O(O)
«°M(0,3) - Tl( (3p) - [ axy P(x-xy) §5

> °(0)
o Botenom) Fem(y)) = 0 (2.79)

Unless the bracket is zero, the function ko(l)(o T,) 1s secular
which would make ko(l) itself secular because the second term
in Eq. (2.59) is not a function of 7, and therefore cannot can-

cel the secular T1 dependence. If the bracket is zero,
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o, (O’;l) =0 ' (2.80)

from which we conclude

%) (0,2,) = k() (0,0,% (2.81)

5)
and also

ko(l)(?o) = ko(l)(éo,o = (2.82)

,2)

The bracket 1s, in fact, the Fokker-Planck equation

10(0) o(o)
3“£“l(72) '\/\dxl e (x=xy) 3"/\ o Spxemy-w) F—i(%p)

( (2.83)

0(2)

and the function k is then giVen'by

T
0(2) 0 k(1) 4
1z = dx | éx (x - ) (x-x -vA,v,0,7
j; J[ 1 EF’ 1/ v 1t

3°(0) .
-J; dkfdxl B—(X"xl) F‘f daup g-(x-x -vi) T—'——( 0) +

1(0
+f d)»f dxl (x xl) g?fd“' (x-xl -ViL) g—-(--u-:?-lf-—(—-l

-3
. (x-xl-v Av,0, 0,72)

+f d)»fdxl a5 %y ) g-\;j:\duf dx, %?%(x-xg-vu) .

3(1)2(0) " |
3——————--—(x~x -vk,x-xz-vl,v,0,0,Tz) (2.84)
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We now examine the case 8 =1 . The equation is given by

1

310 + o1y + 0T, tove ov +
1(1) a2 (1)
+ g%(x-xl) S%———— ‘/que 3¢(X ~X, ) 3—-“-' (2.65)

Upon substitutlon, this equation can be written

1(2) 1(1) 1(0)
g%b + ggl (X-Xl—VT03V,0,$1) + ak - (x=x 1=VTgs Ve .0,0, T ) +
- -
EERION

&-XXI S5V ,,'1.'2 +O xla—ixxl

a 1(0) ’ -
3%————(x-xl-vl+v,0,0,12) +

<+

T
0]
g%(x-xl) gv{#l(l)(x-xl-vro,v,o,ﬁl) +-jg a g%(x«xl-vx)-

0(0) K (2),.1(0)
glc-—--—('re) +];deg%(x-xl-vx) g-‘-/,-—li——-—— .

.(x-xl-vro,v,O,O,fQ) +

5(2),2(0) N
-FJF oxx/éxz dx(x Ay~ V )3 —(x-xl-vwo,x-xg—vw,v L0 o)

d C !
+\/‘dx2 3§(x-x2) g;{#e(l)(x-xl-vwo,x-xg-vxo,O,O,Tl) +
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Ko)

+‘j; [ (x-xl-vk)gﬁjggiigl(x-x -VT,v,O,O,?a) +

(x-x -vk)%ﬁilg&igl(x-xl-vr 0, 0,12) +

7o [0 3¢ (A )2(0)
-+JQ dk[g;(x-xl-VX) + ai(x-xe-vx)] So— *

-
‘(X-XI-VTO,X-XE-VTO,V,O,O,Tz) +

A
+\/\ d%/‘dx (x-x -v\) gé_25§£fl .

.(x-xl-VTO,x-xe-vwo,x-XB-VTo,v,O,O,?Q)} ' (2.86)
Performing the Ty integration ylelds

To A
kl(g) =_/; ar a¢(x_x -vx)a_(_icf_g_).(o,o,%’z) +

Yo S o 3
+fo (x-x ~vA) 3-— L du fb dxl-g2 X=X -vl) .
‘()‘)kl( )

¢ G (xex]~v (M), v,0,0,7;) -

0 3 M 1(1) 2
.f axr (x-xl-vx)s—— k (x=-x -VTO,V,O,Tl) +
O .

dx v 1
70 - 5 (X)) 1—0-7\ 2(0)
+fo ar %—g(x-xl-vl)%v—— A dp 3—-(x-x -V(>‘+“'))ak (To)

+fo axr a—i(X“Xl-Vk)a“-;—" o dug-(x"x "V(X-HJ,))



gfﬂlf-—f-——)(x-xl-vro,v 0,0, 12) +

(x) - >
Jr dks—(x- -vk) | dx, 3—(x-x =v(Atn)) -

. a(X)kQ(O)

- (x-xl-v'ro,x-xe-v'ro,v,0,0,?z) +

TO a()‘)kE(l)
+f dxr/ dx, (x-x -vA) 3——————(x-x1~v'ro,x—x2-VTo,v 0, 12)
0

10 5()
R fo [ ax G-, )G | [ © (x-xy~v (A1) -
: gf,””)k“") (%-%,mVT0s,0,0,75) + So(x-x=v(M4t)) +
: gil+u)kl(o) X=X =VT)
+ . “a [ axy Elxmxymwn) o) Lo o | 32 (g - () +

] 3(X+u)k2(0)

(x-x -v(AHL) X=X =VTq,X~X5=VT(,V,0, O,’r\e) +

+j; od)&f (x-x -\ ) a—f dx3 %;% .

(A+1),.3(0)
(x-x =v (A4 ))a K (X-Xl—VTO,X~x2—VTo,X—X3-VTO,V,O, O,érg)

1(1) 1(0)
-1 F—— X-Xl-VTO,V ,0, T ) + -g-k————(x—x =VTqasV,0,0, 12)>

(2.87)
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The term contalning the star is a speudo-secularity; in fact,

we have
T To"‘ (M) 1(0)
A;C)dﬁjéx (x-x vx)g—-—-JF (x-x v(x+u))gv k (x=-x-v714,
v,0,0,7,)
(2.88)

This seems to have secularities proportional to various powers
of To > in particular, quadratic and cublc.

We examine in detall the following integral

A
J\dx (x- 2) 3—bf d (x -X, vljaﬁ—lziigl(x~xl—vro,v,0,0,?e) =

0 5(*)1(0)
=\/\dx2 g%(x-xg)gvkl; dx (x-x -vx)g————————(x-xl~v10,v 0,0, 72) +

32 ), 1(0)
t/\dXEN%% X=X )3—\/\ dx (x X5 V) Er——li———~(X-X1-VTO,V 0,0, 12)

(2.89)
We study the second term of Eq. (2.89) written as
.UQTOdK dx,, g%(x-xg-vl)géilJC;Eg g%(x-xe-v(l+u)) .
. %ix+u)kl(0) (x-xl-vro,v,0,0,$2)
Tj;10d§]\dx2 g%(x-xg-vx) %i—l odz %g(x-x -vz ) géfﬁ&iﬁgl .
. (X-Xl-VTO,V,O,O,%E) (2.90)
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Upon streaming, the first term of Eq. (2.1) is given by

T

j; dr [ dx, %%(x-xz-vk) 2 )

A
jﬁdu-s—(x-xz—v(l+u)) Si + iyt (0) .

a
. (x-x -VTO,V,O,O,TQ)

A
==Jf d%j\dx (x-x -vX) gi—l- dz 3~(y-x2 -vz ) aiilz_i_l

-\
. (X-xl-VTO,V,O,O,Tz) (2.91)

We can evaluate the collisional part of the integral as follows

5()
fdxe (X X, ) 3-—-f (x-x -vA) 3 3—3——

5——\]\ dk{h/‘dx (x x2) (x-x -v\) Eigz (2.92)

We now introduce variables as

’,

let x = x, =X VA = W (2.93)

We can write the tensor part of this equation as

fax 3¢ (x) a¢(x¢) ) _f ax o (x) Lo Lx-w

Xi Xj

dey ¢ (x) %.9%5:_2

- 5 ’ .

Ty (W)
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P1i78189\ @ ’
- _< ijezi J/. Q éul - e 40,07 () = Ty, (W) (2.94)

and we now have

o0 a 1 o0 a
j; axr Tij(“') yvg = ;;\j; dp Tij(u) ov. T

5. .+e.e © ’ e.e o (5 -, e )
_ 13781 o’ ( 183 ” }a _ 137%1%3/
_{_____V___J.j;du uu)_ deug(u)W_-

o0

'fo du _Mgu ?85_\75 (2.95)

We can write this as

" d 1 d
fo )ndXTij(u) 3_5-{-3 v2f uduTiJ(u) B-—J

=<. (613,;163)_@ apflun) - J uduﬂ(u)>r

(8, s~ese.) e,e ©
=<._LL;%_J_ Q(0) + —i—é—lfo duQ(u))%—}-{—j—

5. .=
=<( ij :j_ej) a(0) - _e_j;;i Q(o)> %—X—;
v

v

(5i -2e.e,)
.13 —id 9
= = (0) 5% (2.96)

This leads to the following expressilon
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1(0) (5 eN 3
%%5"-—(X-X1'VTO,V 0,0,7 5) = L—a gvi< ijv 1% )

+ 0(0) 3 f‘sﬂ’ieieﬂ 3xj}kl(o) (2.97)

v

We now investigate

o =fomdu m .fo %—“—'%Efdxqb(xw(x—u)

. &’-fdmi(k)lze’ik‘“ = (or)3 J/; 2 %ﬂdkl&lgem‘e‘*

\3
(2w) woody .

S

i

-] . - - ° ® 4 ~
(21r)3f d“fdkwlg(-ik-e)e‘lke“ = (er)3 %—f %ﬁfdkme .
0

T
Now,
(%) =f w ola | 3 1fdp,ei°“ - or15(a) (2.99)

Notice that J is an odd integral. Therefore, we conclude

€ =1 a>o _
J(a) = mie(a) (2.100)
€ = ~1 a< 0 -

Therefore, we obtain for a

(en)’ 3fdk|a|2<-ik-e>¢ie<-k-e) -
= - ﬁg"ﬁ Wf diz\lalzlkoe (kee) (2-10i)
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We have the identity
xe(x) = |x| (2.102)
Therefore, we have
= -4#4\[\d£|5|2|§-el <0 (2.103}

We can then rewrite Eq. (2.97) as

a0 oy (By4me4ey) d (%157°84e 1(0
3?5_*— = llal ov d v - avJ + |9(°)|avi\ Jv 1) } (©)

(2.104;)

To test for positive-definite nature of the collision integral, we
compute

(¢,A‘$)=\j\ dxdve (x-vt,v)Ad (x-vt)
5. -
ol ffonas 38 Sz 3¢
r 706, ,~2e,e
-|Q(O)t[]éxdv{gvih¢(x-vwo,v)J iJve : J[ng ¢(x-vro,v)].
-|Q(O)[[Yéxdv g——<e-v'VT ¢ (x, v)> iJ 2ei J a e-Y’VT0¢(X\0
. vy OX g ’

-|Q(O)t[76xdv[ v VT (6 - 19 3——>¢(x V)J——J:Ei__l

A A
. (%i- e O¢(x,v)>

J

J
= -|Q(O)t[]éxdv<gv; ¢(x,v)><513-281 d 5 (x v)
+ |9(0)|TQKYAXGV[%§I ¢(x,v)<ﬁiJ-i:ieJ> gij(x,v) (2,105}
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The alpha term can be written

_|at[yaxdv[<§v; - To §§I>J¢(x,v) 513;9133{ SVJ - Ty g§3>¢(x,v)] =

6, ,~e.e -e,e
= -Iak[Yéxdv 331 ij 4] gg + 2|9 Q[Yéxdv o¢ ijv 1] 23

v

J

-e,e
~|°‘|Toff dxdy 32 21472184 3¢ (2.106)

OX4 v dxi

We see that for large To the Tg term dominates.
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III. NONADIABATIC ANALYSIS

By considering the Lorentz gas in a weakly coupled regime,
we have shown :that a correct lowest-order two-particle correla-
tion function solution to the BBGKY hierarchy is given via a
Green's function whose Fourier transform satisfies the analy-
ticity requirements for causality. The Bogolubov adlabatic
approximation is shown to imply a solution which 1s acausal.
Extension to the s-narticle correlatior. function is discussed.

The successful derivation of dispersion relations for the
fundamental correlation function (Green's function) gives us
conditions that any approximation to the behavior of a plasma
must satisfy, including instabilitiles.

The Lorentz gas, cohsisting of one electron and N=-1 1lons,
is described by the Hamiltonlan

H =gﬁ+12’ b (x-%,) =%+Z ¢,(%) (3.1)
=1, 1=1

where the ions have fixed positions, ii , and the electron has
unit mass. The BBGKY hierarchy for the s-body distribution

S

function, F- , for this system reads

g8=-1 :
op® *‘s_d’(‘z N3 ps
3= * UVET =gV ), %0V
- -
+ G;PQ (nr%)f di"csv¢s°'\7st+1 (3.2)

where the magnitude of the potentlal, ¢O , and its range, ry s
are introduced so that ¢1 has unit magnitude and range. 1In
the weakly-coupled gas regime,

WIG-
= o

= ¢ <1l and nr% =1 (3.3)

Spatial homogenelty of the electron distributlon gives
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1 EY
F* = F(v,t) (3.4)
and for spatially homogeneous and uncorrelated ion distributions,

2

FC = F + G(%,il,ﬁ,t) (3.5)

where ¢ 1is the two-body correlation function. Substitution

into the FL,F° equations implies

g% = e\j\d;16¢l-évG (3.6)
%%. + ;GGG = €6¢1°$VF (3'7)

where integral terms of order e involving F have been neglec-
ted in (3.6) and ones involving G(X,%,) and H(X,X,,%y) (the
three-body correlation function) have been neglected in (3.7).
Hereafter, §1 is taken to be zero except when several ions

are considered.

The fact that the equations are linear implies that they
can be regarded as describing a superposition of equilibrium and
nonequilibrium terms

F=F+f , G = Ggq + & (3.8)

where the equilibrium terms must satisfy

d & )
0= ax V¢-VVGeq
- D . ) -t (3.9)
Ve Geq = eV¢-VVFeq

Any spherically symmetric function for Feq(é) leads to
stationary solutims for these equations and the equillibrium
terms in Eqs. (3.6) and (3.7) can then be dropped. The non-
equilibrium terms satisfy

g% = efd;c $¢-§‘7vg (3.6')
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?( - - -]

- 4
3 + veVg = gVQS.VV (3'7 )

]

Ty

Fourier transform methods on (3.7 ) readily yield

£

. PR S DA s 4
g(X,%),7,t) = efdt fd;? 5 (X=X -V (t-t ))Vo-V £(t)
0

6 u wa a
ef o Vo (x-v1)-T £ (6-2) (3.10
0

where it 1s assumed that g(t<0) = O; i.e., that the system is
disturbed from equilibrium at ¢t = O .

it

Substitution of (3.10) into (3.6") yields

af‘ 2t R S e e g { o
3t = € \/;dk\j\dx V¢-VV(V¢(X-VX)-va(t-X)) (3.17)
an integrodifferential equation in 3 and ¢t for f£ . Solu-

tion of this equation for appropriate initial conditions would
give the lowest-order behavior of f for all time, following
some initial disturbance from equilibrlum.

Given such a solution, Egs. (3.6°) and (3.7°) are decoupled
and (3.10 1s simply an integral expression for g which can be
viewed as a Green's function solution to (3.7)

A 2 a et , 4, o« 4, R S | S8,
g(x,xl,v,t) =\]\ dt erx G(x-x",t-t )eV¢-va(x,v,t ) (3.12)
- 00 s ————

in terms of a correlation "source" (underlined) which 1s assumed
to be zero for t" < 0. It is of some importance to note from
Eq. (3.10 that G does not tamper wlth the form of the dependence
on § in the source; in fact, 3 is basically a parameter in

the relationship between g and its "source."

The standard one-dimensional analysils of causality proceeds
from the ilnspection of the Fourler transform of the Green's func-
tion G(t); Titchmarsh's theorem gives equivalence of the analy-
ticlty of
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0

A(@) = -l-j dr e3%7G (1) (3.13)
- o

in the upper half plane and the.reqdirement G(t) = 0 for

t < 0. In the present case; the condition G(i,r) = 0 for

v < x/v demands consideration of

[ |
- (-] a - .
Ak, @) = — 2f dx einfdx e~ 1K Xg (%, 1) (3.14)
(27 )€ Y=o

which 1s, in fact, analytic in the upper half plane for G zero
outside the forward cone x; < V47T .

-
The Green's function G(i,f) = 5(x-31)9(1) for the correla-
tion is manifestly causal and

A (k,0) =

(zv)gf dre 1(1‘ v-w)t (1-&‘-5 real) (3.15)

Introducing o = ®, + ®; ,

- 1 .16
A(k @) (21r)2 (w +iw, )- kv Moy >0 (3-1%)

i. e., A(k w) 1s verified to be analytic in the upper half w-plane.
A(k w) reduces to a constant times the distribution é(w-k v) on

the real axls and also satisfiles dispersion relations there.

The Bogolubov analysis of the correlation functilon, 8g »
rests on the assumptions

[+
: ) ITRY
1) g =>: g, (X,%,7,t)
n=0
11) gy depends on time only through f
111) gB(x-vx,t) >0
A > oo

Writing g = erf and noting that gx depends on f only
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through ; , 1t follows that

d¢ bg 38
3% = 28, S8 (3.17)

88

where 5g/6§ is the vector whose components are functional
derivatives of g with respect to components of s .

Equation (3.7 ) with substitution from (3.6") then becomes

og
3-4gB + €2 v B-V <‘f\dx VoV gB> -$¢ (3.18)
S

Use of (1), equating powers, and use of (1ii) implies:

<o

H . s
. v$ dax,, (x, = x+v/v)
-00

2

19
8, = =5 3o5v— (%/V) T where T depends on (3.19)
2 7 2 ovyovy T TT LIk T position only 2

and simllar contractions of tensors depending on G,t with ones
depending on §,§1 for higher-order even terms.

From the form of these solutions, it is evident that the
time dependence of g 1s not of a retarded character but
instantaneous. Consequently, the solution 1s acausal. Consid-
eration of a Green's function and its Fourier transform 1is not
appropriate for (3.18 since it is not linear in gn but it is
appropriate for

- o
Bg * € = Vy 3~ 8.V . (3.20)
where f and g are assumed known. Expansion in powers of €

again glves the result that time dependence 1is instantaneous and
thus GB(§,1) for Eq. (3.20) must contain a factor &(t).
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As a consequence of this, AB(ﬁ,w) is a constant function of
® and consideration of rvalyticity is polntless. In any case,
the instantaneous GB Acicarly ig not causal in the same sense
that the exact G = 8(x-vt)@(t) 1s. The adiabatic assumption
(11) is simply too crude an approximation to give the proper
causality result.

Green's function analysis of the linear time scale solutions
for g 1leads to

d dsoSD

Grpg = 5 (x~-x -V(TO-TO ))9(7 -Tg )6(12 > ) (3.21)

through second order; clearly, the result 1s causal on the To
gcale and acausal on the To scale.

The results for the two-body correlation function
G(§,§1,$,t) = G, can be extended to s bodles. Writing

F" = K 4-2Jcombinations of X
1,25 000,81 g-1 indices in 1150023500
s -2 places
+ s EJG + F (3.22)

it can be shown by induction that the s-body correlation function
satisfies

+ v VJK = gource term involving lower-order
[3E 1,2,0..,8-1 correlations (3.23)

where terms of magnitude '€ or smaller in the s-body and higher
correlation functions have been dropped.

The exact Green's function, which 1s causal, again applies
for the s-body correlation.

39



Example I - The Ionization Model

Consider the BBGKY hierarchy appropriate for a spatially
homogeneous gas. In lezding order for small momentum transfer
(¢ << kT = 1), the two-particle correlation function, g , satis-
fies

% .4 3 P )
3% * V1p V108 = 5 ) 33 - 33 1Fo (3.24)

12 9P1 ©Pp
Fl is the one-particle distribution function for the i'th speciles.

Equation (3.24) has the form of a continuity equation in config-
uration space. This fact implles that the "correlation charge"

-d o

< -3
QE\[éxlgg(xlz:Vltvzxt) (3'25)

can be expressed directly in terms of the source of g

t ~ o, O
o - [ ek, 22 (S - 2k (B MRy (Tp0) (3.26)
0 ox op op
12 1 2
Note that the .definition of Q@ 1ig introduced after the bulk
1imit (N,V = o with n fixed) has been taken (as implied by Eq.

(3.24).

Since [ d§12(8¢12/8§12) = 0 for any central potential, the
total correlation charge vanlshes in leadlng order

Q=0 (3.27)

Bogolubov's functional assumption violates thls basic fea-
ture of the nonequilibrium equations. We illustrate thils fact
with a simple but instructive example. Consider a neutral, ldeal
gas in thermodynamic equilibrium. At t = O, "ionize" the gas by
switching on a two-body potential, ¢12 . The solution of Eq.
(3.24) 1s given by

- . - - -
g(x12’v1’v2’t) = -[¢(x12)-¢(x125v12t)]Ml(vl)M2(v2) (3°28)
where M(@) is the Maxwellian. Strictly speaking, Eq. (3.28) 1is

40



the result of linear tim: scale analysis. In a fully nonadiabatic
treatment (G.V. Ramanathan, A.H. Kritz and G. Sandri, Phys. Lett.
31A, 477 (1970), the function M adjusts to the lonization. This
adjustment does not alter qualitatively the considerations made
here. From Eq. (3.28), we can prove directly that Q = 0 for

all times. Indeed, from Eq. (3.28) we see that the correlation

g has a charge localized at short interparticle separations equal
in magnitude and opposite in sign to a correlation charge propa-
gated in the direction of the relative veloclity. The cofrelation
function given by Eq. (3.28) does not reach thermodynamic equili-
brium in a uniform sense. A proper description of the approach

of the two-body correlation function to thermodynamic equilibrium
must include three-body collisions that damp the travelllng part
of the correlation function. The travelling part of the correla-
tion moves away from a fixed region of phase space so that

Tliinwg(xlfvl’ 22 ) = '¢(;12)M1(61)M2({;2) (3-29)

for fixed v12 . However, we want to emphasize that Q 1is stilll
zero, not the integral of the right-hand side of Eq. (3.29),

J - a
-f ¢(x12)M1(v1)M2(v2)dx12.
Bogolubov's approximation for Eq. (3.24) is given by

oo aqb
X 4 _ 12 d - -
gB(XIE’Vl’VQ’t) —J(;dl S;‘_—(x12 12X) <ap 1(V1:t)F2(V23t)

12 p
(3.30)
which gives for the ionization model

-

B (Xyps 715 7ps8) = =B (% )My (V) My (V) (3.31)

(i.e., the "equilibrium result"). This result leads to a viola-
tion of Eq. (3.27) and shows that it 1s not safe to check a non-
equilibrium result by inserting F(v,t) = M(V) and comparing the
resulting expression with an equilibrium formula.

The failure of Bogolubov's method is more evident in the

41



presence of a strong magaetic fileld. In this case, the left-
hand side ofJEq (3. 24) is modified by the term
- -\
[ql(vl X B)°Vp + QQ(V X B) V ]g . The ionization model gives
2

Y - 4 -
g = -[¢(x12)-¢(x12-v12"t-v12lsin Bt-Q.v,,, cos Bt)IM M, (3.32)

where Q = ¢ Bk . The correlation charge satisfies
ik R
Q + [ql(V X B)- V + q2(v2 X B)+V_]Q = 0 and thus is zero
P P

for all times if it 1is initially zero. In examining the approach
of g to thermodynamic equilibrium, it 1s even more nonuniform
than in the first case because of the oscillations that appear in
the argument of ¢ . The Bogolubov approximation, Eq. (3.30),
becomes meaningless when we congider Ehe magnetic case with v”=0 .
The argument of ¢12 will be Xy, = Vqi5, sin B\ - Q'Vlzi cos BA .
This quantity has no limit as A tends to infinity. A proper
treatment of this problem has recently been obtained by A. Klimas
and G. Sandri, Ap. J., 169, 41 (1971). The presence of the mag-
netic field makes it clear that the relationship between
Bogolubov's formula (3.29) and the canonical equilibrium is rather
superficial.

Example II - Models of Plasma Instability

We can write the first equation of the BBGKY hierarchy as

BFl aFl awl .
5t * KiF1 = Biofip 3V ox) (3.33)
where we have introduced
v _ f dx %12 3
Ky=vi'V »  Lip = % Wa3x 'Ov] (3.34)

In addition, the Vlasov self~consistent potential has been defined
through

wl =\/‘dxedv2¢12F2 (3.35)
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It is easy to show that if thes interparticle potential ¢12

is the Coulomb potential, then ¢1 satisfies the Poisson equa-
tion, with the charge generated by the average over the one-body
veloclty distribution function. The two-particle correlation
function, again in full generality, satisfies the equation

%8,
ST * KypBqp = €l1p81p + €IF Fp +

o g, Ry gy
, %12 o, % %
371 3x1 5v2 3x2
2
+ Lhy 5 (3.36)

where we have introduced the correlation potentials given by

X12 =fdx3dv3¢13g23 (3°37)

X51 =‘j\dx3dv3¢23gl3 (3.3%)

The corralation potentials are the terms responsible for Debye
shielding and are critical for the understanding of plasma in-
stability. In order to develop a more detailed nonadiabatic
analysis for these basic equations, we introduce Fourier trans-
forms and obtain, for a spatially homogeneous plasma, a simpler
set of equations which are cast in a form suitable for nonadia-
batia analysis; namely,

6 a ~ -

22 + [p(,3,) + DLT,) oy = 5 (S - SRF,  (3.39)

Bvl ng

where the linear operator D 1s defined by
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S 09 4 4 2 SF =,
D(k,v) = ikev - ik | dv (3.40)
) av“[

The explicit form of the operator D can be written as

S D o a OF [“_‘
( = 1k, - 13k, —2t
D\k,vl)glg = 1k.v,8,, - 16k = J 9V815 (3.41)
1

In the case of the stable plasma, the operator D can be replaced
by the first term. Under these conditions, a full nonadiabatic
analysis has been carried out showing the causal behavior of g
gng the need for proper treatment in the neighborhood of small
kev .

We can set up a model that allows us to investigate the
mathematical behavior of an initially unstable velocity distri-

butlon. We write the first two equations of the BBGKY hierarchy
as

%% = -e\/\d§ Ig = -¢ | dk Ig (3.42)

g J O e S S
%% + ik-va(k,v)g (3.43)

]
<y
]

where the tilde represents Fourier transformed quantities. For
the time being, the model equations neglect recoil, but they
incorporate a most important feature that has to be investigated,
namely the fact that the propagation characteristics of the corre-
lation function are modified by a dielectric response function,

A , relatlve to the stable case. 1In fact, we have

A=1 (stable plasma) (3.44)

and, 1n general, for a stables plasma,
- -
A* (k) = A(-k) : (3.45)
In the stable case, we have a zero for the D function

D(k,v) = ik-vA(k,v) (3.46)
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at
kev=20 (3.47)

This condition corresponds to

-l
(a) k =0 (long wavelengths)
-
(b) v.=0 (zero relative velocity)
(c) k orthogonal to v ( mode propagating perpen-

dicular to the particle veloclty)

A zero for the D function that 1s fundamentally different from
the stable zero is glven by

D = |kl (3.48)

The behavior of f for thls case has been obtained by a rather
difficult numerical integration. The method employed consists of
transformlng the coupled equations for f and g 1into an integro-
differential equation for f alone. This latter is of the
Fahltung form for Laplace transforms and therefore its solution
can be obtained 1n the Laplace variable. The inversion of the
Laplace transform was then obtained with the Bellman-Kalaba-
Lockett inversion method. The result of the numerical integra-
tion 1is shown 1In Figure 1. Extensive numerical analysis shows
that the qualitative features of the result are insensitive to
the specific value chosen for ¢ .

To construct the integrodifferential equation for £, we
solve the g equation as

t
g = (e tBVEMy (e (3.49)
0
Therefore,
f t
= = by -2 A .
S = e . oM(en)e(n) (3.50)

where the kernel function 1s given by
+00

K (t) =f kT (k)T (k Je~ 1K VAS (3.51)

- 00
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and the k 1integration is in the directlon parallel to the
relative velocity. With

-~ - -kl /2
I = =:/-]-'-:2_e (3'5?>
| k| ,
we readily obtain
1
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